Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Selectiveness of laser processing due to energy coupling localization: case of thin film solar cell scribing

Identifieur interne : 000565 ( Main/Repository ); précédent : 000564; suivant : 000566

Selectiveness of laser processing due to energy coupling localization: case of thin film solar cell scribing

Auteurs : RBID : Pascal:13-0335430

Descripteurs français

English descriptors

Abstract

Selectiveness of the laser processing is the topmost important for applications of the processing technology in thin-film electronics, including photovoltaics. Coupling of laser energy in multilayered thin-film structures, depending on photo-physical properties of the layers and laser wavelength was investigated experimentally and theoretically. Energy coupling within thin films highly depends on the film structure. The finite element and two-temperature models were applied to simulate the energy and temperature distributions inside the stack of different layers of a thin-film solar cell during a picosecond laser irradiation. Reaction of the films to the laser irradiation was conditioned by optical properties of the layers at the wavelength of laser radiation. Simulation results are consistent with the experimental data achieved in laser scribing of copper-indium-gallium diselenide (CIGS) solar cells on a flexible polymer substrate using picosecond-pulsed lasers. Selection of the right laser wavelength (1064 nm or 1572 nm) enabled keeping the energy coupling in a well-defined volume at the interlayer interface. High absorption at inner interface of the layers triggered localized temperature increase. Transient stress caused by the rapid temperature rise facilitating peeling of the films rather than evaporation. Ultra-short pulses ensured high energy input rate into absorbing material permitting peeling of the layers with no influence on the remaining material.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0335430

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Selectiveness of laser processing due to energy coupling localization: case of thin film solar cell scribing</title>
<author>
<name sortKey="Raciukaitis, G" uniqKey="Raciukaitis G">G. Raciukaitis</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Laser Technologies, Center for Physical Sciences and Technology</s1>
<s2>02300 Vilnius</s2>
<s3>LTU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Lituanie</country>
<wicri:noRegion>02300 Vilnius</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Grubinskas, S" uniqKey="Grubinskas S">S. Grubinskas</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Laser Technologies, Center for Physical Sciences and Technology</s1>
<s2>02300 Vilnius</s2>
<s3>LTU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Lituanie</country>
<wicri:noRegion>02300 Vilnius</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gecys, P" uniqKey="Gecys P">P. Gecys</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Laser Technologies, Center for Physical Sciences and Technology</s1>
<s2>02300 Vilnius</s2>
<s3>LTU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Lituanie</country>
<wicri:noRegion>02300 Vilnius</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gedvilas, M" uniqKey="Gedvilas M">M. Gedvilas</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Laser Technologies, Center for Physical Sciences and Technology</s1>
<s2>02300 Vilnius</s2>
<s3>LTU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Lituanie</country>
<wicri:noRegion>02300 Vilnius</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0335430</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0335430 INIST</idno>
<idno type="RBID">Pascal:13-0335430</idno>
<idno type="wicri:Area/Main/Corpus">000592</idno>
<idno type="wicri:Area/Main/Repository">000565</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0947-8396</idno>
<title level="j" type="abbreviated">Appl. phys., A Mater. sci. process. : (Print)</title>
<title level="j" type="main">Applied physics. A, Materials science & processing : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Interfaces</term>
<term>Laser ablation technique</term>
<term>Laser assisted processing</term>
<term>Laser beam applications</term>
<term>Laser irradiation</term>
<term>Multilayers</term>
<term>Solar cells</term>
<term>Temperature distribution</term>
<term>Thin films</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Traitement par laser</term>
<term>Irradiation laser</term>
<term>Cellule solaire</term>
<term>Champ température</term>
<term>Couche mince</term>
<term>Multicouche</term>
<term>Interface</term>
<term>Application laser</term>
<term>Méthode ablation laser</term>
<term>Substrat polymère</term>
<term>4262C</term>
<term>Séléniure de cuivre gallium indium</term>
<term>8460J</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Selectiveness of the laser processing is the topmost important for applications of the processing technology in thin-film electronics, including photovoltaics. Coupling of laser energy in multilayered thin-film structures, depending on photo-physical properties of the layers and laser wavelength was investigated experimentally and theoretically. Energy coupling within thin films highly depends on the film structure. The finite element and two-temperature models were applied to simulate the energy and temperature distributions inside the stack of different layers of a thin-film solar cell during a picosecond laser irradiation. Reaction of the films to the laser irradiation was conditioned by optical properties of the layers at the wavelength of laser radiation. Simulation results are consistent with the experimental data achieved in laser scribing of copper-indium-gallium diselenide (CIGS) solar cells on a flexible polymer substrate using picosecond-pulsed lasers. Selection of the right laser wavelength (1064 nm or 1572 nm) enabled keeping the energy coupling in a well-defined volume at the interlayer interface. High absorption at inner interface of the layers triggered localized temperature increase. Transient stress caused by the rapid temperature rise facilitating peeling of the films rather than evaporation. Ultra-short pulses ensured high energy input rate into absorbing material permitting peeling of the layers with no influence on the remaining material.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0947-8396</s0>
</fA01>
<fA03 i2="1">
<s0>Appl. phys., A Mater. sci. process. : (Print)</s0>
</fA03>
<fA05>
<s2>112</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Selectiveness of laser processing due to energy coupling localization: case of thin film solar cell scribing</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Special Issue on Laser Ablation: Optics and Selective Diagnostics</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>RACIUKAITIS (G.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GRUBINSKAS (S.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>GECYS (P.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GEDVILAS (M.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>HESS (W.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>RODE (A.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>ZORBA (V.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>HARO-PONIATOWSKI (E.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Department of Laser Technologies, Center for Physical Sciences and Technology</s1>
<s2>02300 Vilnius</s2>
<s3>LTU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>93-98</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>16194A</s2>
<s5>354000505174580150</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>25 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0335430</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Applied physics. A, Materials science & processing : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Selectiveness of the laser processing is the topmost important for applications of the processing technology in thin-film electronics, including photovoltaics. Coupling of laser energy in multilayered thin-film structures, depending on photo-physical properties of the layers and laser wavelength was investigated experimentally and theoretically. Energy coupling within thin films highly depends on the film structure. The finite element and two-temperature models were applied to simulate the energy and temperature distributions inside the stack of different layers of a thin-film solar cell during a picosecond laser irradiation. Reaction of the films to the laser irradiation was conditioned by optical properties of the layers at the wavelength of laser radiation. Simulation results are consistent with the experimental data achieved in laser scribing of copper-indium-gallium diselenide (CIGS) solar cells on a flexible polymer substrate using picosecond-pulsed lasers. Selection of the right laser wavelength (1064 nm or 1572 nm) enabled keeping the energy coupling in a well-defined volume at the interlayer interface. High absorption at inner interface of the layers triggered localized temperature increase. Transient stress caused by the rapid temperature rise facilitating peeling of the films rather than evaporation. Ultra-short pulses ensured high energy input rate into absorbing material permitting peeling of the layers with no influence on the remaining material.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40B62C</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Traitement par laser</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Laser assisted processing</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Irradiation laser</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Laser irradiation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Irradiación láser</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Cellule solaire</s0>
<s5>11</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Solar cells</s0>
<s5>11</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Champ température</s0>
<s5>41</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Temperature distribution</s0>
<s5>41</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>47</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>47</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Multicouche</s0>
<s5>48</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Multilayers</s0>
<s5>48</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Interface</s0>
<s5>49</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Interfaces</s0>
<s5>49</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Application laser</s0>
<s5>66</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Laser beam applications</s0>
<s5>66</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Méthode ablation laser</s0>
<s5>67</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Laser ablation technique</s0>
<s5>67</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Substrat polymère</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>4262C</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Séléniure de cuivre gallium indium</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fN21>
<s1>315</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000565 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000565 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0335430
   |texte=   Selectiveness of laser processing due to energy coupling localization: case of thin film solar cell scribing
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024